

ПАСПОРТ НАСОС ЦИРКУЛЯЦИОННЫЙ СЕРИИ НЕS

ПРОИЗВОДИТЕЛЬ: YUHUAN ENJOY HVAC EQUIPMENT CO., LTD

АДРЕС ПРОИЗВОДИТЕЛЯ: Yungang village, Yuhuan County, Zhejiang Province, China

СТРАНА ПРОИЗВОДИТЕЛЯ: КИТАЙ

1. МОДЕЛИ

- 1.1. 215-3631 Насос циркуляционный с мокрым ротором HES25-4-180(P) PN10 Ogint
- 1.2. 215-3650 Насос циркуляционный с мокрым ротором HES25-6-180(P) PN10 Ogint
- 1.3. 215-3651 Насос циркуляционный с мокрым ротором HES25-8-180(P) PN10 Ogint
- 1.4. 215-3652 Hacoc циркуляционный с мокрым ротором HES25-4-130(P) PN10 Ogint
- 1.5. 215-3653 Насос циркуляционный с мокрым ротором HES25-6-130(P) PN10 Ogint
- 1.6. 215-3654 Hacoc циркуляционный с мокрым ротором HES25-8-130(P) PN10 Ogint
- 1.7. 215-3655 Hacoc циркуляционный с мокрым ротором HES32-4-180(P) PN10 Ogint
- 1.8. 215-3656 Hacoc циркуляционный с мокрым ротором HES32-6-180(P) PN10 Ogint
- 1.9. 215-3657 Насос циркуляционный с мокрым ротором HES32-8-180(P) PN10 Ogint

2. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- 2.1. Циркуляционные насосы с мокрым ротором OGINT предназначены для создания принудительной циркуляции теплоносителя с переменной или постоянной скоростью потока в открытых и закрытых системах отопления зданий и сооружений любого назначения.
- 2.2. В качестве рабочей среды может использоваться вода и гликолесодержащие (до 50%) жидкости, не содержащие добавки, агрессивные к материалам насоса и нерастворимые механические примеси.

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

No	Характеристика	Значение
1	Напряжение питания, В	220
2	Частота питания, ГЦ	50
3	Рабочее давление, МПа	до 1,0
4	Температура рабочей среды, ^о С	от-30 до +110
5	Допустимая температура окружающей среды, ^о С	до +40
6	Класс электропотребления, ЕЕІ	≤ 0.207
7	Режимы работы насоса	CN1\CN2\CN3, PP1\PP2\PP3, CP1\CP2\CP3, ECO(AUTO), PWM
8	Класс защиты	IP44
9	Класс изоляции	Н

10	Корпус насоса	Чугун с катафорезным покрытием
11	Уровень шума, дБ	≤45

	Модель циркуляционного насоса								
Характеристики	HES25- 4-130(P)	HES25- 6-130(P)	HES25- 8-130(P)	HES25- 4-180(P)	HES25- 6-180(P)	HES25- 8-180(P)	HES32- 4-180(P)	HES32- 6-180(P)	HES32- 8-180(P)
Мощность, BT	25	45	65	25	45	65	25	45	65
Сила тока, А	0.04 - 0.13	0.04 - 0.21	0.04 - 0.3	0.04 - 0.13	0.04 - 0.21	0.04 - 0.3	0.04 - 0.13	0.04 - 0.21	0.04 - 0.3
Макс. напор, м	4	6,98	8	4	6,98	8	4	6,98	8
Макс. произв-сть, м³/час	2,8	3,2	4,2	2,8	3,2	4,2	2,8	3,4	4,4
Присоединительный размер, мм	25	25	25	25	25	25	32	32	32
Присоединительная резьба, дюйм	1 1/2	1 1/2	11/2	11/2	11/2	1 1/2	2	2	2

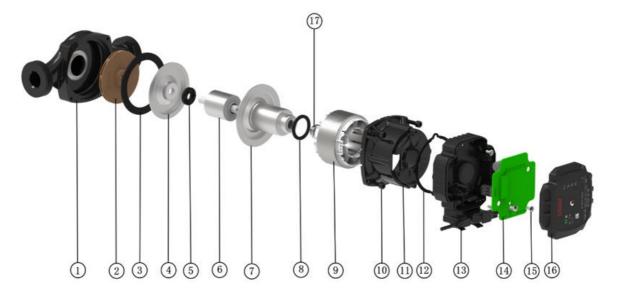
4. КОМПЛЕКТНОСТЬ

Циркуляционный насос – 1 шт.

Кабель питания – 1 шт.

Комплект монтажных гаек с прокладками— 1 комп.

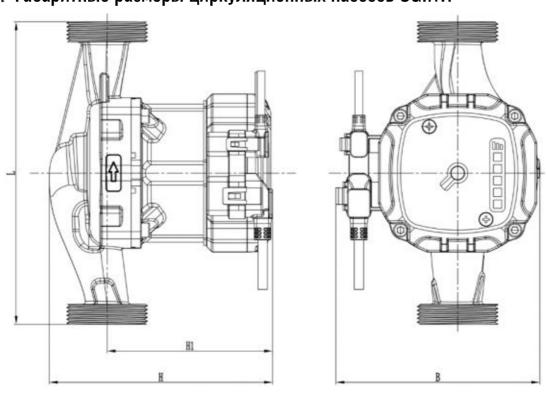
Кабель для ШИМ-сигнала— 1 шт.


Паспорт - 1 шт.

Упаковка – 1 шт.

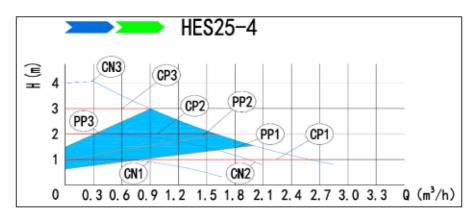
5. КОНСТРУКЦИЯ И МАТЕРИАЛЫ

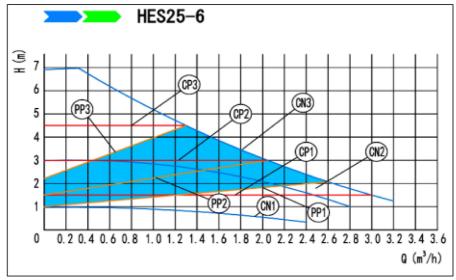
- 5.1. Циркуляционный насос OGINT с интеллектуальным преобразованием частоты серии HES, представляет собой энергосберегающий циркуляционный насос с экранированной конструкцией, синхронным двигателем с постоянными магнитами, приводом преобразования частоты и интеллектуальным управлением.
- 5.2. Особенности конструкции циркуляционных насосов OGINT:

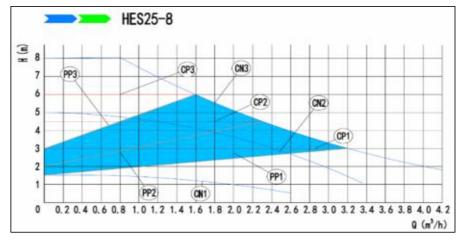

- малошумный: ротор смазывается жидкостью, подаваемой насосом, и создаваемый шум чрезвычайно низок;
- отсутствие утечки: динамического уплотнения нет, только статическое уплотнение, которое эффективно предотвращает утечку жидкости;
- высокая термостойкость: рабочее колесо и двигатель изготовлены из термостойких материалов, которые могут транспортировать жидкости с высокой температурой (до+110°C);
- высокая износостойкость: подшипники двигателя изготовлены из материалов высокой твердости и износостойкости, и не требуют технического обслуживания.
- высокая эффективность: использование интеллектуального управления двигателем с постоянными магнитами, применение высокоэффективных центробежных рабочих колес, значительная экономия электроэнергии;
- длительный срок службы: ротор и статор изолированы защитными втулками из нержавеющей стали, а жидкость, поступающая из внутренней полости, используется для отвода тепла, что обеспечивает возможность продления срока службы;
- многорежимность: возможность выбора режима работы насоса;
- интеллектуальность: обладание функциями самообучения и запоминания, адаптивной настройкой, поддерживает систему в наилучшем рабочем состоянии и предоставляет различные информационные инструкции для облегчения работы пользователя.

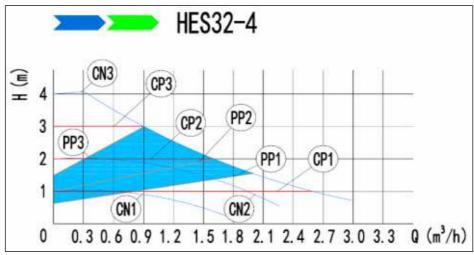
2	Крыльчатка	Полисульфон (PSF)
3	Прокладка	Резина (EPDM)
4	Защитная крышка в сборе	Нерж.сталь (OCr18Ni9)
5	Упорный подшипник	Графит+резина (Graphite+EDPM)
6	Ротор	Феррит + инженерный пластик + керамический вал
7	Защитная втулка в сборе	Нерж.сталь (OCr18Ni9)
8	Прокладка	Резина (EPDM)
9	Статор	Сталь кремниевая (50W/470 / QZY/2-180)
10	Винты	Сталь
11	Корпус двигателя	Алюминий (ADC12)
12	Прокладка	Резина (EPDM)
13	Клеммная коробка	Пластик (ABS/PC+30%GF)
14	Контрольная панель	Печатная плата (РСВ)
15	Винты	Сталь
16	Крышка клеммной коробки	Пластик (ABS/PC+30%GF)
17	Винт	Медь с хромированным покрытием

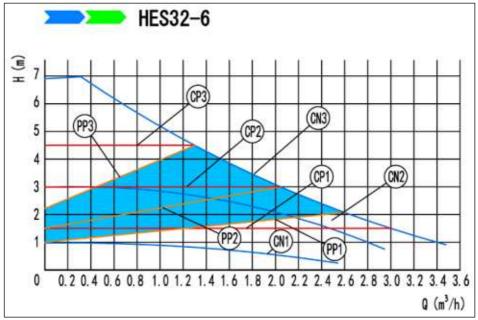
6. ГРАФИКИ И ГАБАРИТНЫЕ РАЗМЕРЫ

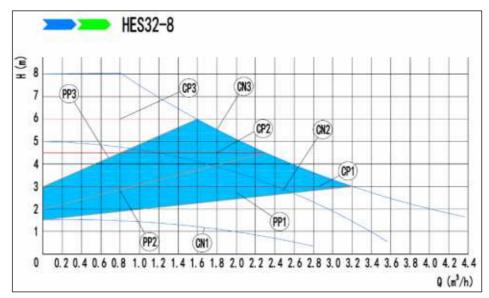

6.1. Габаритные размеры циркуляционных насосов OGINT.

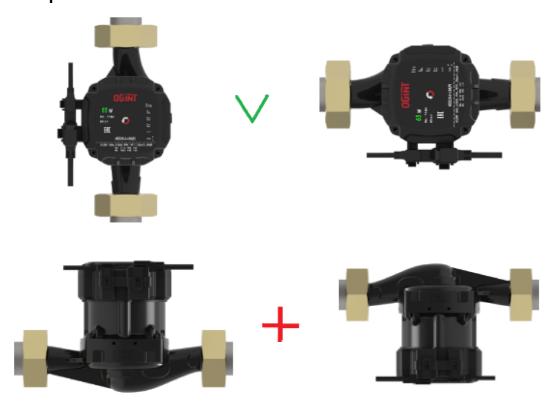



Характе	HES25-	HES25-	HES25-	HES25-	HES25-	HES25-	HES32-	HES32-	HES32-
ристики	4-130(P)	6-130(P)	8-130(P)	4-180(P)	6-180(P)	8-180(P)	4-180(P)	6-180(P)	8-180(P)
L, MM	130	130	130	180	180	180	180	180	180
В, мм	125	125	125	125	125	125	125	125	125
Н, мм	135	135	135	135	135	135	135	135	135
Н1, мм	100	100	100	100	100	100	100	100	100


6.2. Графики производительности циркуляционных насосов OGINT.

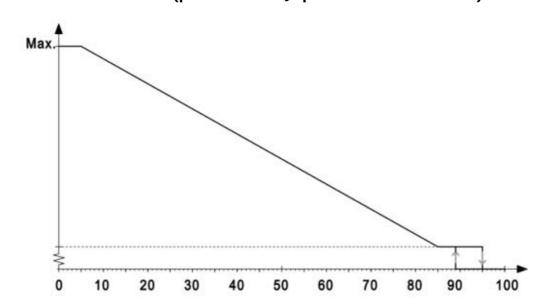

H(m) – напор м Q(m3/h) – производительность м3/ч





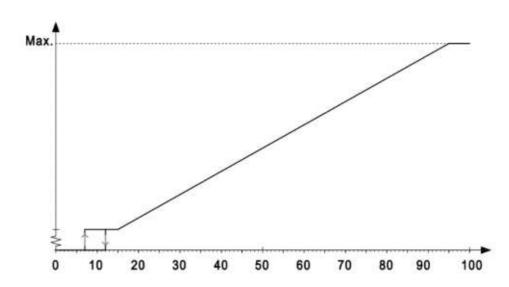
7. МОНТАЖ И ПОДКЛЮЧЕНИЕ

- 7.1. Установка циркуляционного насоса производится после окончания всех сварочных, паяльных, слесарных работ и промывки трубопроводов.
- 7.2. Направление движения теплоносителя должно совпадать с направлением стрелки на корпусе насоса.
- 7.3. Для увеличения срока службы рекомендуется устанавливать циркуляционный насос в обратную магистраль.
- 7.4. На входе и выходе насоса рекомендуется установка запорной арматуры. Благодаря этому отпадет необходимость в сливе и повторном заполнении системы при замене электронасоса.
- 7.5. Перед насосом рекомендуется устанавливать фильтр механической очистки с размером ячейки 500...800 мкм.
- 7.6. Насос следует устанавливать так, чтобы вал двигателя находился в горизонтальном положении.


7.7. Из системы необходимо полностью удалить воздух.

8. ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1. Режимы работы циркуляционных насосов OGINT:
 - 1) Фиксированная скорость (CN1,CN2,CN3) + 1 : работа с постоянной заданной скоростью работы системы;
 - 2) Пропорциональное давление (PP1,PP2,PP3) + 1 : работа с заданным давлением и расходом системы;
 - 3) Постоянное давление (CP1,CP2,CP3) + 1 : работа в соответствии с кривой давления, предварительно заданной системой;
 - 4) Адаптивный режим **AUTO** : используется для тестирования производительности **EEI** и режима энергосбережения;



5) Режим связи: (PWM H/S) : Н Режим (режим ШИМ-управления отоплением)

PWM Входной сигнал (%)	Состояние насоса
[0, 5]	Циркуляционный насос работает на самой высокой скорости
[6, 85]	Скорость насоса линейно снижается с самого высокого уровня до самого низкого
[86, 88]	Циркуляционный насос работает на самой низкой скорости
[89, 93]	Входной сигнал колеблется вблизи точки переменной скорости, в соответствии с принципом гистерезиса, это предотвратит запуск и остановку насоса.
[94, 100]	Циркуляционный насос перестает работать и переходит в режим ожидания

S Режим (солнечный ШИМ-режим)

PWM Входной сигнал (%)	Состояние насоса
[0, 7]	В режиме ожидания циркуляционный насос не работает
[8, 12]	Входной сигнал колеблется вблизи точки переменной скорости, в соответствии с принципом гистерезиса, это предотвратит запуск и остановку насоса.
[13, 15]	Циркуляционный насос работает на самой низкой скорости
[16, 95]	Скорость насоса линейно повышается с самого низкого уровня до самого высокого
[96, 100]	Циркуляционный насос работает на самой высокой скорости

9. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Неисправность	Причина	Решение
Насос не работает.	- Отсутствует электропитание.	- Проверить напряжение в сети. Проверить
		надежность всех электрических соединений.
		Проверить состояние автоматического
		выключателя.
	-Вал насоса заблокирован.	

	- Повреждён электродвигатель либо конденсатор.	- Разблокировать вал вручную. Прочистить насос от грязи Обратиться в сервисный центр.
Двигатель работает, но нет циркуляции теплоносителя.	- Закрыта запорная арматура Скорость установлена неверно Недостаточное давление теплоносителя в системе	 Убедиться, что запорная арматура открыта. Отрегулировать режим работы насоса. Увеличить давление теплоносителя в системе или проверить наличие сжатого воздуха в расширительном баке.
Шум в системе.	 - Слишком высокая частота вращения ротора насоса. - Наличие воздуха в системе или насосе. - Недостаточное давление воды на входе в насос. 	 Уменьшить частоту вращения ротора насоса. Проявление шума на протяжении первых двух часов является нормальным явлением. Удалить воздух из системы или насоса. Увеличить давление воды на входе в насос или проверить наличие сжатого воздуха в расширительном баке.

10. УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВКА

- 10.1.Изделия должны храниться в упаковке предприятия изготовителя по условиям хранения 3 по ГОСТ 15150. Консервация по ВЗ-4, ВУ-0 ГОСТ 9.014-78.
- 10.2. Транспортировка изделий должна осуществлять в соответствии с условиями 5 по ГОСТ 15150.

11. УТИЛИЗАЦИЯ

- 11.1.Утилизация изделия (переплавка, захоронение, перепродажа) производится в порядке, установленном Законами РФ от 04 мая 1999 г. No 96-ФЗ «Об охране атмосферного воздуха» (в редакции от 11.06.2021г.), от 24 июня 1998 г. No 89-ФЗ (в редакции от 14.07.2022г.) «Об отходах производства и потребления», от 10 января 2002г. No 7-ФЗ «Об охране окружающей среды» (в редакции от 26.03.2022г.), а также другими российскими и региональными нормами, актами, правилами, распоряжениями и пр., принятыми во использование указанных законов
- 11.2.Содержание благородных металлов: нет

12. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 12.1.Изготовитель гарантирует соответствие изделия требованиям безопасности, при условии соблюдения потребителем правил использования, транспортировки, хранения, монтажа и эксплуатации.
- 12.2. Гарантия распространяется на все дефекты, возникшие по вине заводаизготовителя.
- 12.3. Гарантия не распространяется на дефекты, возникшие в случаях:

- нарушения паспортных режимов хранения, монтажа, испытания, эксплуатации и обслуживания изделия;
- ненадлежащей транспортировки и погрузо-разгрузочных работ;
- наличия следов воздействия веществ, агрессивных к материалам изделия;
- наличия повреждений, вызванных пожаром, стихией, форс-мажорными обстоятельствами;
- повреждений, вызванных неправильными действиями потребителя;
- наличия следов постороннего вмешательства в конструкцию изделия.
- 12.4. Производитель оставляет за собой право внесения изменений в конструкцию, улучшающие качество изделия при сохранении основных эксплуатационных характеристик.

13. УСЛОВИЯ ГАРАНТИЙНОГО ОБСЛУЖИВАНИЯ

- 13.1.Претензии к качеству товара могут быть предъявлены в течение гарантийного срока.
- 13.2. Неисправные изделия в течение гарантийного срока ремонтируются или обмениваются на новые бесплатно.
- 13.3. Затраты, связанные с демонтажом, монтажом и транспортировкой неисправного изделия в период гарантийного срока Покупателю не возмещаются.
- 13.4.В случае необоснованности претензии, затраты на диагностику и экспертизу изделия оплачиваются Покупателем.
- 13.5.Изделия принимаются в гарантийный ремонт (а также при возврате) полностью укомплектованными.

Ü	уСЛОВИЯМИ	УСТАНОВКИ	И	ЭКСПЛІУАТАЦИИ	HAUUUA	U3HAKUMJIEH(A)	
ПР	ПРЕТЕНЗИЙ ПО ТОВАРНОМУ ВИДУ НАСОСА НЕ ИМЕЮ						
чис	СЛО, МЕСЯЦ, ГОД:			подг	ІИСЬ:		

ГАРАНТИЙНЫЙ ТАЛОН

HACOC ЦИРКУЛЯЦИОННЫЙ СЕРИИ HES

Количество шт	
Дата продажи	
	(число, месяц, год)
Продавец (поставщик)	
	(подпись или штамп)
С условиями согласен	
	(подпись покупателя)
Срок службы – 10 лет	
Гарантийный срок –	
5 лет с момента производства	