

01 - 07.1

03.03.GB

LDM valves with Belimo actuators

Ky coefficient calculation

Calculation itself is carried out with respect to conditions of regulating circuit and operating medium according to equations mentioned below. Control valve must be designed to be able to regulate maximal flow quantity at given operating conditions. At the same time it is necessary to check whether minimal flow quantity can be even regulated or not.

Condition is the following ratio $r > Kvs / Kv_{min}$

Because of eventual minus tolerance 10% of $Kv_{\text{\tiny 100}}$ against Kvs and requirement for possible regulation within range of maximal flow (decrement and increase of flow), producer recommends to select Kvs value higher than maximal operating Kv value:

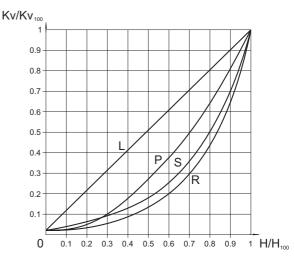
Kvs = 1.1 ÷ 1.3 Kv

It is necessary to take into account to which extent Q_{max} involve "precautionary additions" that could result in valve oversizing.

Relations of Kv calculation

		Pressure drop	Pressure drop				
		$p_2 > p_1/2$ $\Delta p < p_1/2$	∆p ≧ p₁/2				
		$\Delta p < p_1/2$	$p_2 \leq p_1/2$				
	Liquid	$\frac{Q}{100}$ 1	$\frac{\rho_1}{\Delta p}$				
Kv =	Gas	$\frac{Q_{_{n}}}{5141}\sqrt{\frac{\rho_{_{n}}.T_{_{1}}}{\Delta p.p_{_{2}}}}$	$\frac{2.Q_{_n}}{5141.p_{_1}}\sqrt{\rho_{_n}.T_{_1}}$				
rv –	Superh. steam	$\frac{Q_{\scriptscriptstyle m}}{100}\sqrt{\frac{v_{\scriptscriptstyle 2}}{\Delta p}}$	$\frac{Q_m}{100}\sqrt{\frac{2v}{p_1}}$				
	Sat. steam	$\frac{Q_{m}}{100}\sqrt{\frac{v_{2}.x}{\Delta p}}$	$\frac{Q_m}{100}\sqrt{\frac{2v.x}{p_1}}$				

Above critical flow of vapours and gases


When pressure ratio is above critical ($p_2/p_1 < 0.54$), speed of flow reaches acoustic velocity at the narrowest section. This event can cause higher level of noisiness. Then it is convenient to use a throttling system ensuring low noisiness (multi-step pressure reduction, damping orifice plate at outlet).

Flow characteristic selection in regard of valve stroke

To make right selection of valve flow characteristic, it is suitable to carry out checking of what stroke values will be reached in different operation states. We recommend to carry out such checking at least for minimal, nominal and maximal flow rates. The principle for flow characteristic selection is to avoid, if possible, $5 \div 10\%$ of the beginning and end of the valve stroke range.

To calculate valve stroke at different operating conditions with different types of flow characteristics is possible with the advantage of using LDM's calculation programme VALVES. The programme serves for complete design of valve from Kv calculation to specification of a concrete valve with its actuator.

Valve flow characteristics

L - linear characteristic

 $Kv/Kv_{100} = 0.0183 + 0.9817 \cdot (H/H_{100})$

R - equal-percentage characteristic (4-percentage)

 $Kv/Kv_{100} = 0.0183 \cdot e^{(4.H/H_{100})}$

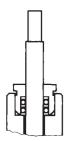
P - parabolic characteristic

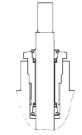
 $Kv/Kv_{100} = 0.0183 + 0.9817 \cdot (H/H_{100})^2$

S - LDM spline characteristic

Dimensions and units

Unit	Name of dimension
m³.h⁻¹	Flow coefficient under condition of units of flow
m³.h ⁻¹	Flow coefficient at nominal stroke
m³.h ⁻¹	Flow coefficient at minimal stroke
m³.h ⁻¹	Valve nominal flow coefficient
m³.h ⁻¹	Flow rate in operating conditions (T ₁ , p ₁)
Nm³.h ⁻¹	Flow rate in normal conditions (0°C, 0.101 Mpa)
kg.h ⁻¹	Flow rate in operating conditions (T ₁ , p ₁)
MPa	Upstream absolute pressure
MPa	Downstream absolute pressure
MPa	Absolute pressure of saturated steam at given temperature (T,)
MPa	Valve differential pressure ($\Delta p = p_1 - p_2$)
kg.m⁻³	Process medium density in operating conditions (T ₁ , p ₁)
kg.Nm⁻³	Gas density in normal conditions (0°C, 0.101 Mpa)
m³.kg-1	Specific volume of steam when temperature T ₁ and pressure p ₂
m³.kg-1	Specific volume of steam when temperature T ₁ and pressure p ₁ /2
K	Absolute temperature at valve inlet (T ₁ = 273 + t ₁)
1	Proportionate weight volume of saturated steam in wet steam
1	Rangeability
	m³.h¹ m³.h¹ m³.h¹ m³.h¹ m³.h¹ m³.h¹ Nm³.h¹ Nm³.h¹ kg.h¹ MPa

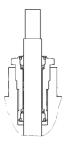



Principles for plug type selection

V-ported plugs should not to be used in above - critical differential pressures with inlet pressure $p_{,} \! \ge \! 0.4$ MPa and for regulation of saturated steam. In these cases we recommend to use a perforated plug. The perforated plug should be also used always when cavitation may occur due to a high differential pressure value or valve ports erosion caused by high speed of process medium flow. If the parabolic plug is used (because of small Kvs) for pressures $p_i \! \ge \! 1.6$ MPa and above - critical differential pressures, it is necessary to close both plug and seat with a hard metal overlay, i.e. stellited trim.

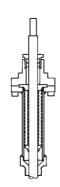
Packing - O -ring EPDM

Packing is designed for non-aggressive media with temperature from 0° to 140° C. Packing excels with its reliability and long time tightness. It has ability of sealing even if the valve stem is a bit damaged. Low frictional forces enables valve to be actuated with a low-linear-force actuator. Service life of sealing rings depends on operating conditions and it is more than 400 000 cycles on average.



Applied to RV 102, RV 103

Applied to RV 2xx


Packing - DRSpack® (PTFE)

DRSpack® (Direct Radial Sealing Pack) is a packing with high tightness at both low and high operating pressure values. It is the most used type of packing suitable for temperatures ranging from 0° to 260°C. The pH range is from 0 to 14. The packing enables using of actuators with low linear force. The design enables an easy change of the whole packing. The average service life of DRSpack® is more than 500 000 cycles.

Packing - Bellows

Bellows packing is suitable for low and high temperatures ranging from -50° to 550°C. Bellows ensures absolute tightness to environment. Packing is equipped with safety PTFE packing as standard to prevent medium from leaking in case of damage to bellows. Intensive linear forces are not required.

Application of bellows packing

Bellows packing is suitable for applications with very aggressive, toxic or other dangerous media that require absolute tightness to environment. In such case, it is necessary to check compatibility of used body material as well as the valve inner parts material with process medium. It is recommended to use bellows with safety packing preventing medium from leaking in case of damage to bellows when there is an extremely dangerous process medium used.

Bellows is also a great solution to use of process medium either with temperature below zero when ice accretions cause premature damage to packing or with high temperatures when bellows ensures medium cooling.

Service life of bellows packing

Bellows material			Temperature		
	200°C	300°C	400°C	500°C	550°C
1.4541	100 000	40 000	28 000	7 000	not applicable
1.4571	90 000	34 000	22 000	13 000	8 000

Values specified in the table above show minimal guaranteed number of cycles with the valve full stroke when the bellows is fully lenghtened and pressed. In regulation, when the valve moves only in a portion of the stroke range at the inner centre of the valve, the service life of the bellows is many times longer then depending on concrete operating conditions.

Procedure for designing of two-way

Given: medium water, 155°C, static pressure at piping spot 1000 kPa (10 bar), $\Delta p_{\text{DISP}} = 80$ kPa (0,8 bar), $\Delta p_{\text{PIPELINE}} = 15$ kPa (0,15 bar), $\Delta p_{\text{APPLIANCE}} = 25$ kPa (0,25 bar), nominal flow rate $Q_{\text{NOM}} = 8 \text{ m}^3 \cdot \text{h}^{-1}$, minimal flow rate $Q_{\text{MIN}} = 1,3 \text{ m}^3 \cdot \text{h}^{-1}$.

$$\begin{array}{l} \Delta p_{\text{DISP}} = \Delta p_{\text{VALVE}} + \Delta p_{\text{APPLIANCE}} + \Delta p_{\text{PIPELINE}} \\ \Delta p_{\text{VALVE}} = \Delta p_{\text{DISP}} - \Delta p_{\text{APPLIANCE}} - \Delta p_{\text{PIPELINE}} = 80 - 25 - 15 = 40 \text{ kPa (0,4 bar)} \end{array}$$

$$K_V = \frac{Q_{NOM}}{\sqrt{\Delta D_{max}}} = \frac{8}{\sqrt{0.4}} = 12.7 \text{ m}^3.\text{h}^{-1}$$

 $\label{eq:Kv} \text{Kv} = & \frac{Q_{\text{\tiny NOM}}}{\sqrt{\Delta p_{\text{\tiny VALVE}}}} = & \frac{8}{\sqrt{0,4}} = 12,7 \text{ m}^{\text{\tiny 3}}.h^{\text{\tiny -1}}$ Precautionary additions for process tolerances (provided that flow rate Q was not oversized):

$$Kvs = (1,1 \text{ to } 1,3) \cdot Kv = (1,1 \text{ to } 1,3) \cdot 12,7 = 14 \text{ to } 16,5 \text{ m}^3.\text{h}^1$$

Now we choose the nearest Kvs value from those available in our catalogue, i.e. Kvs = 16 m³.h⁻¹. This value corresponds to nominal size of DN 32. Then if we choose flanged execution PN 16, body made of spheroidal cast iron, with metal - PTFE seat sealing, packing PTFE and equal-percentage flow characteristic, we will get the following specification No.:

RV 21x XXX 1423 R1 16/220-32

x in the valve code above (RV21x) stands for valve execution (direct or reverse) and depends on type of used actuator which should be chosen in respect to demands of regulating system (type, producer, voltage, type of control, necessary torque or linear force, etc.)

Determination of real pressure drop value of a chosen valve at fully open

$$\Delta p_{\text{VENTIL H100}} = \left(\frac{Q_{\text{NOM}}}{\text{Kvs}}\right)^2 = \left(\frac{8}{16}\right)^2 = 0,25 \text{ bar (25 kPa)}$$

The control valve's real pressure drop calculated this way shall be taken into account in a hydraulic calculation of regulating circuit.

Determination of valve's real authority

$$a = \frac{\Delta p_{VALVEH100}}{\Delta p_{VALVEH0}} = \frac{25}{80} = 0.31$$

Value a should be at least equal to 0,3. A chosen valve checking is then satisfactory.

Caution: the valve's authority calculation should be related to a valve pressure difference in its closed position i.e. disposition pressure value in a branch $\Delta p_{\mbox{\tiny AVAIL}}$ when flow rate is zero, not to a pressure value of a pump Δp_{pump} , because, due to pipeline circuit pressure drops up to the spot where the regulating branch is connected, the following equation applies: $\Delta p_{\mbox{\tiny AVAIL}} < \Delta p_{\mbox{\tiny PUMP}}.$ In such cases we consider for simplicity the following: $\Delta p_{AVAIL.H100} = \Delta p_{AVAIL.H0} = \Delta p_{DISP}$.

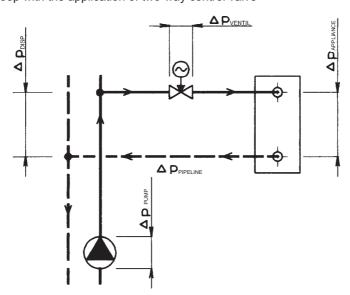
Checking of rangeability

We carry out the same checking for minimal flow rate Q_{MIN} =1,3 m³.h⁻¹. The following differential pressure values correspond to the min. flow rate: $\Delta p_{\text{pipeLINE QMIN}} = 0,40$ kPa, $\Delta p_{APPI | ANCE OMIN} = 0.66 \text{ kPa}. \Delta p_{VALVE OMIN} = 80 - 0.4 - 0.66 = 78.94 = 79 \text{ kPa}.$

$$Kv_{MIN} = \frac{Q_{MIN}}{\sqrt{\Delta p_{VALVE QMIN}}} = \frac{1.3}{\sqrt{0.79}} = 1.46 \text{ m}^3.\text{h}^{-1}$$

Necessary rangeability value

$$r = \frac{Kvs}{Kv_{MIN}} = \frac{16}{1,46} = 11$$


shall be lower than mentioned rangeability value of r = 50. Checking is then satisfactory.

Selection of suitable flow characteristic

On the basis of calculated values $Kv_{_{\text{NOM}}}$ and $Kv_{_{\text{MIN}}}$, it is possible to read the appropriate stroke values from the graph for individual types of flow characteristics of the valve and choose the most suitable one accordingly. Here we have h_{NOM} = 96% = 41% for equal-percentage characteristic. In that case, LDM- spline flow characteristic is more suitable (93% and 30% of the stroke). It corresponds to the following specification code:

RV 21x XXX 1423 S1 16/220-32

Scheme of typical regulation loop with the application of two-way control valve

More detailed information on calculation and design of LDM control valves is mentioned in calculation instructions Remark: No. 01-12.0. Equations mentiened above apply in a simlified way to water. To reach optimum results, we recommend to use oroginal calculation programme VALVES which is available on request free of charge.

Procedure for designing of three-way valve

Given: medium water, 90 ° C, static pressure at piping spot 1000 kPa(10 bar), $\Delta p_{\text{\tiny PUMP2}}{=}40$ kPa (0,4 bar), $\Delta p_{\text{\tiny PIPELINE}}{=}10$ kPa (0,1bar), $\Delta p_{\text{\tiny APPLIANCE}}{=}20$ kPa (0,2 bar), flow rate průtok $Q_{\text{\tiny NOM}}{=}7$ m³.h¹ †

$$\begin{array}{l} \Delta \rho_{_{PUMP2}} = \Delta \rho_{_{VALVE}} + \Delta \rho_{_{APPLIANCE}} + \Delta \rho_{_{PIPELINE}} \\ \Delta \rho_{_{VALVE}} = \Delta \rho_{_{PUMP2}} - \Delta \rho_{_{APPLIANCE}} - \Delta \rho_{_{PIPELINE}} = 40\text{--}20\text{--}10 = 10 \text{ kPa (0,1bar)} \end{array}$$

$$K_V = \frac{Q_{\text{NOM}}}{\sqrt{\Delta p_{\text{VALVE}}}} = \frac{7}{\sqrt{0,1}} = 22,1 \text{ m}^3.h^{-1}$$

Precautionary additions for process tolerances (provided that flow rate Q was not oversized):

$$\text{Kvs} = (1,1 \text{ to} 1,3)$$
. $\text{Kv} = (1,1 \text{ to} 1,3)$. $22,1 = 24,3 \text{ to} 28,7 \text{ m}^3.\text{h}^{-1}$

Now we choose the nearest Kvs value from those available in our catalogue, i.e. Kvs = $25 \text{ m}^3.\text{h}^{\circ}$. This value corresponds to nominal size of DN 40. Then if we choose flanged execution PN 16, body made of spheroidal cast iron, with metal - PTFE seat sealing, packing PTFE and equal-percentage flow characteristic, we will get the following specification No.:

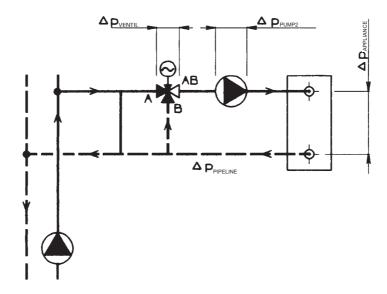
RV 21x XXX 1413 L1 16/140-40

x in the valve code above (21x) stands for valve execution (direct or reverse) and depends on type of used actuator which should be chosen in respect to demands of regulating system (type, producer, voltage, type of control, necessary torque or linear force, etc.)

Determination of real pressure drop value of a chosen valve at fully open

$$\Delta p_{VALIVE H100} = \left(\frac{Q_{NOM}}{Kvs}\right)^2 = \left(\frac{7}{25}\right)^2 = 0.08 \text{ bar (8 kPa)}$$

The control valve's real pressure drop calculated this way shall be taken into account in a hydraulic calculation of regulating circuit.


Caution: To ensure reliable function of three-way valves, the most important condition is to keep minimum available pressure difference between A and B ports. Three-way valves are capable to manage even high pressure difference between A and B ports but valve's flow characteristic deformates then and so regulation properties deteriorate. So if in doubt about pressure difference value between those two ports (e.g. when three-way valve is piped directly into primary side without pressure separation), we recommend to use a two-way valve in combination with a primary-secondary side short cut to ensure a reliable regulation. The authority of A-AB way of three-way valve is, providing a constant flow rate in appliance circuit, the following:

$$a = \frac{\Delta p_{\text{VALVE H100}}}{\Delta p_{\text{VALVE H0}}} = \frac{8}{8} = 1 \ ,$$

which means that the behaviour of flow in A-AB way corresponds to ideal flow curve of the valve. In that case there are Kvs values in both ports the same with linear characteristic i.e. the total flow is nearly constant.

A combination of equal-percentage characteristic in A port and linear characteristic in B port shall be selected in those cases when loading of A port with differential pressure against B port cannot be avoided or when the primary side parametres are too high.

Scheme of a typical regulation loop with the application of a three-way mixing control valve

Remark: More detailed information on calculation and design of LDM control valves is mentioned in calculation instructions No. 01-12.0. Equations mentiened above apply in a simlified way to water. To reach optimum results, we recommend to use oroginal calculation programme VALVES which is available on request free of charge.

RV 102 B RV 103 B

Control valves DN 15 - 50, PN 16 with Belimo actuators

Description

Control valves series RV 102 are two-way or three-way valves with internal threaded connection. Valve body is made of brass. Control valves series RV 103 are two-way or three-way valves with flanged connection. Valve body is made of grey cast iron. Valves are optionally manufactured in the following executions:

- three-way control valve
- two-way, reverse control valve
- two-way, angular, control valve

Valves RV 102 B and RV 103 B are especially designed for Belimo actuators.

Application

Valves are designed for application in heating, ventilation or air conditioning systems for maximal temperature 150°C.

Maximal permissible working pressures according to ČSN 13 0010, see page 18 of this catalogue.

Process media

Valve series RV 102 and RV 103 are designed to regulate the flow and pressure of liquids, gases and vapours without abrasive particles e.g. water, low-pressure steam (it applies to RV 102 only), air and other media compatible with material of the valve inner parts. Medium acidity and alkalinity should not exceed range of pH $4.5\ to\ 9.5$.

To ensure reliable regulation, producer recommends to pipe a strainer in front of the valve into pipeline.

Installation

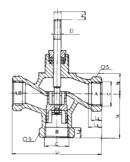
The valve is to be piped the way so that the direction of medium flow will coincide with the arrows on the body (inlet ports A,B and outlet port AB).

In flow-diverting valves, the process medium flow is reversed (inlet port AB and outlet ports A, B).

Valve can be installed in any position except position when the actuator is under the valve body.

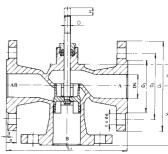
Technical data

Series	RV 102	RV 103						
Type of valve	Three-way	control valve						
	Two-way, reversed control valve							
Nominal size range	DN 1	5 - 50						
Nominal pressure	PN 16							
Body material	Brass 42 3135	Grey cast iron EN-JL 1040						
Plug material	Br	Brass 42 3135 Grey cast Iron EN-JL 1040 Brass						
Operating temperature range	0 to 150°C							
Face to face dimensions	Section M4 Acc. to DIN 3202 (4/1982)	Section 1 acc. to ČSN-EN 558-1 (3/1997)						
Connection	Internal threaded coupling	Type B1 (raised-faced)						
	Acc. to ČSN-ISO 229-1 (9/2003)	Acc. to ČSN-EN 1092-1 (4/2002)						
Type of plug	V-port	ed plug						
Flow characteristic	Linear; equa	al-percentage						
Kvs values	0.6 to 4	10 m³/hour						
Leakage rate	Class III. acc. to ČSN-EN 1349 (5/2001) (<0.01 % Kvs) in way A-AB						
Rangeability	50	50 : 1						
Packing	O - rin	g EPDM						


 Δ p_{max} value is the valve maximal differential pressure when reliable opening and closing can be guaranteed. Because of seat and plug service life, it is recommended so that

permanent differential pressure would not exceed 0.6 MPa for valves RV 102 and 0.4 Mpa for valves RV 103.

		ion on actuat	ing, see	Actuating	(actuator)		NV24-3, NV230-3, NV24-MFT, NVF24-MFT, NVF24-MFT-E
actuators'	catalogu	e sheets		Marking in	n valve specit	fication No.	EBK
				Linear for	ce		800 N
				Kvs [m³/	hour]		Δ p_{max}
DN	Н	1	2	3	4	5	MPa
15		4.0	2.5	1.6	1.0	0.6	1.60
20	10	6.3	4.0	2.5			1.60
25		10.0	6.3	4.0			1.18
32		16.0 10.0 6.3				0.73	
40	16	25.0	16.0	10.0			0.47
50		40.0	25.0	16.0			0.28


Dimensions and weights for the type RV 102

DN	С	L	L ₂	L ₃	V ₁	V ₂	S	Н	D	m
		mm	mm	mm	mm	mm	mm	mm	mm	kg
15	G 1/2	85	9	12	43	25	27			0.55
20	G 3/4	95	11	14	48	25	32	10		0.65
25	G 1	105	12	16	53	25	41		0	0.80
32	G 1 1/4	120	14	18	66	35	50		8	1.40
40	G 1 1/2	130	16	20	70	35	58	16		2.00
50	G 2	150	18	22	80	42	70			2.95

Dimensions and weights for the type RV 103

DN	D ₁	D ₂	D ₃	n x d	а	f	L₁	V ₁	V ₂	Н	D	m
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
15	95	65	45		16		130	65	25			3.2
20	105	75	58	4x14		2	150	75	25	10		4.3
25	115	85	68		18		160	80	25		8	5.5
32	140	100	78		10		180	90	35		0	7.7
40	150	110	88	4x18		3	200	100	35	16		8.5
50	165	125	102		20	3	230	115	42			11.9

Valve complete specification No. for ordering

			XX	X	ΧX	XXX	ХХ	XX	- XX	/ XXX	(-	XX
Type of valve	Control valve		RV									
2. Series	Valves made of brass			1 () 2							
	Valves made of grey cast iron			1 (3							
3. Actuating	Electric actuator NV24-3 (24 V, 3-	position control)			EBK						
1) Actuators with a fail-safe function	Electric actuator NV230-3 (230 V, 3-	position control)			EBK						
	Electric actuator NV24-MFT (24 V,	Multi-functional))			EBK						
	Electric actuator NVF24-MFT 1) (24 V,	Multi-functional)			EBK						
	Electric actuator NVF24-MFT-E 1) (24 V,	Multi-functional)			EBK						
4. Design	Straight, two-way, threaded valves	A					1					
	Angle, two-way, threaded valves	Applicable to RV 102					2					
	Mixing (diverting), three-way, threaded valves	10 10 102					3					
	Straight, two-way, flanged valves	A					4					
	Angle, two-way, flanged valves	Applicable to RV 103					5					
	Mixing (diverting), three-way, flanged valves	10 100					6					
5. Body material	Grey cast iron						3					
	Brass						5					
Flow characteristic	Linear							1				
	Equal-percentage 1)							2				
7. Nominal Kvs value	Column No. acc. to Kvs values table							X				
Nominal pressure PN	PN 16								16			
9. Max. operating temperature °C		•								150		
10. Nominal size	DN											XX

Ordering example: Three-way control valves DN 25, PN 16 with electric actuator SQX 32.00, body material: brass, connection: internal thread G 1, linear flow characteristic, $Kvs = 10 \text{ m}^3$ /hour is specified as follows: **RV 102 ELA 3511 16/140-25**

200 line

RV / HU 2x1 B

Control valves and Fail-safe action valves DN 15 - 65, PN 16 and 40 with Belimo actuators

Description

Control valves RV 211, RV 221 and RV 231 (further in text RV 2x1) are single-seated valves designed for regulation and shut-off of process medium flow. In regard of used actuators, the valves are suitable for regulation at lower differential pressures. Flow characteristics, Kvs values and leakage rates correspond to international standards.

Valves with a fail-safe action series HU 2x1 B have the same design as RV 2x1 with addition of increased seat sealing. Valves are equipped with fail-safe action actuators (valve closes or opens upon power failure).

Valves RV 2x1 B are especially designed for Belimo actuators.

Application

These valves have a wide range of application in heating, ventilation, power generation and chemical processing industries. Valve body can be optionally made of spheroidal cast iron, cast steel and austenitic stainless steel according to operating conditions.

The materials selected correspond to recommendations stipulated by ČSN-EN 1503-1 (1/2002) (steels) and ČSN-EN 1503-3 (1/2002) (cast). The maximum operating pressures for different materials are specified in the table on page 18 of this catalogue.

Process media

Valves series RV / HU 2x1 are designed for regulation (RV 2x1) and for regulation and shut-off (HU 2x1)of flow and pressure of liquids, gases and vapours without abrasive particles e.g. Water, steam, air and other media compatible with material of the valve inner parts. The application of valves made of spheroidal cast iron (RV 211) for steam is limited by the following parametres: Steam must be superheated (its dryness $x \geq 0,98$) and inlet pressure $p_i \leq 0,4$ MPa when differential pressure is above-critical or $p_i \leq 1,6$ MPa when differential pressure is unde-critical. In case these values are exceeded, it is necessary to use valve made of cast steel (RV 221). To ensure reliable regulation, producer recommends to pipe a strainer in front of the valve or ensure in any other way that medium will not contain abrasive particles or impurities.

Installation

The valve is to be piped the way so that the direction of medium flow will coincide with the arrows on the body.

The valve can be installed in any position except position when the actuator is under the valve body. When medium temperature exceeds 150 °C, it is necessary to protect the actuator against glowing heat from the pipeline e.g. by the means of proper insulating of the pipeline and valve or by tilting the valve away from the heat radiation.

Technical data

Series	RV / HU 211	RV / HU 221	RV / HU 231							
Type of valve	Two-way, single-seated, reverse, control valve									
Nominal size range	DN 15 to 65									
Nominal pressure	PN 16, PN 40									
Body material	Spheroidal cast iron	Stainless steel								
	EN-JS 1025	1.0619 (GP240GH)	1.4581							
	(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)							
Seat material : DN 15 - 50	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4							
DIN W.Nr./ČSN DN 65	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4							
Plug material: DN 15 - 65	1.4021 / 17 027.6	1.4021 / 17 027.6	1.4571 / 17 347.4							
DIN W.Nr./ČSN										
Operating temperature range	-20 to 180°C	-20 to 180°C	-20 to 180°C							
Face to face dimensions	Line 1 acc. to ČSN-EN 558-1 (3/1997)									
Flanges	Acc. to ČSN-EN 1092-1 (4/2002)									
Flange face	Type B1 (raised-faced	l) or Type F (female) acc. to ČS	N-EN 1092-1 (4/2002)							
Type of plug		V-ported, parabolic, perforated								
Flow characteristic	Linear, e	qual-percentage, LDMspline®,	parabolic							
Kvs value		0.4 to 63 m ³ /hour								
Leakage rate	Class III. acc. to ČSN-EN 1349	(5/2001) (<0.1% Kvs) for c. valve	es with metal-metal seat sealing							
	Class IV. acc. to ČSN-EN 1349	(5/2001) (<0.01% Kvs) for c. valv	es with metal-PTFE seat sealing							
Rangeability r	50 : 1									
Packing	O - ring EPDM t _{max} =140°C, DRSpack® (PTFE) t _{max} =150°C, Bellows t _{max} =180°C									

Remark: For low operating temperatures (-200 to +180°C), it is possible to supply the valve RV / HU 231 with body material made of 1.4308 (cast stainless steel)

 Δ p_{max}value is the valve max. differential pressure when open-close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that permanent

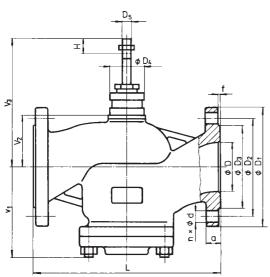
differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

	her inform			Actuation	ng (actua	ator)		NV24-3, NV230-3, NV24-MFT, NVF24-MFT, NVF24-MFT-E
	ig, see ac			Marking	j in valve	spec. N	lo.	EBK
catalogi	ue sheets	,		Linear f	orce			800 N
				Kvs [n	n³/hour]			$\Delta p_{\scriptscriptstyle max}$
DN	Н	1	2	3	4	5	6	metal PTFE
15			2.51)	1.61)	1.01)	0.61)	0.41)	4.00
15		4.01)						3.40
20				2.51)	1.61)	1.0 ¹⁾	0.61)	4.00
20			4.01)					3.40
20		6.31)						1.56
25	20				2.51)	1.6 ¹⁾	1.01)	4.00
25		10.0	6.3 ²⁾	4.02)				0.88 1.29
32					4.01)			3.40
32		16.0	10.0	6.32)				0.45 0.77
40		25.0	16.0	10.0				0.23 0.49
50	7	40.0	25.0	16.0				0.10 0.29
65		63.0	40.0	25.0				0.02 0.17

- 1) parabolic plug
- 2) V-ported plug with linear characteristic, parabolic plug with equal-percentage, LDMspline® and parabolic characteristic. Perforated plug available only with Kvs values in shadowed frames _____ with the following restrictions:
- Kvs values 2.5 to 1.0 m³/hour available with linear characteristic only.
- Perforated plug with Kvs value acc. to column No. 2 available with linear or parabolic characteristic only.

metal - version with metal - metal seat sealing

PTFE - version with metal - PTFE seat sealing


Bellows packing can be used with V-ported plug only.

Equal-percentage, LDMspline $^{\circ}$ and parabolic characteristic available on condition : Kvs value ≥ 1.0

Max. differential pressure $\Delta\,p$ for valves PN 16 must be 1.6 MPa. Max. differential pressures specified in table apply to PTFE and O-ring packing. $\Delta p_{\mbox{\tiny max}}$ for bellows must be consulted with the producer.

Dimensions and weights for the type RV 2x1

		F	PN 16	3			F	PN 40)		PN 16, PN 40													
DN	D ₁	D ₂	D₃	d	n	D₁	D ₂	D₃	d	n	D	f	D ₄	D ₅	L	V ₁	V_2	$^{*}V_{2}$	V ₃	*V ₃	а	m₁	m ₂	[#] m _√
	mm	mm	mm	mm		mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
15	95	65	45			95	65	45			15				130	68	47		143		16	4.5	5.5	
20	105	75	58	14		105	75	58	14		20				150	68	47		143		18	5.5	6.5	
25	115	85	68			115	85	68		4	25				160	85	52	250	148	346	18	6.5	8	3.5
32	140	100	78		4	140	100	78		4	32	2	44	10	180	85	52	250	148	346	20	8	9.5	3.5
40	150	110	88	10		150	110	88	18		40				200	85	52	250	148	346	20	9	11	3.5
50	165	125	102	18		165	125	102	10		50				230	117	72	270	168	366	20	14	21	3.5
65	185	145	122		4 ¹⁾	185	145	122		8	65				290	117	72	270	168	366	22	18	27	3.5

- with regard of the standard previously in force, there is an option to have the number of connection bolts as stipulated in ČSN-EN 1092-1
- * for valve with bellows packing
- $\mbox{m}_{\mbox{\tiny v}}$ weight to be added to weight of valve equipped with bellows packing
- m, for valves RV / HU 211
- $m_{_{\! 2}}\text{-}\ \text{for valves RV/HU}\,221$ and RV/HU 231

200 line

RV / HU 2x3 B

Control valves and Fail-safe action valves DN 25 - 65, PN 16 and 40 with Belimo actuators

Description

Control valves RV 213, RV 223 and RV 233 (further in text RV 2x3) are single-seated valves with pressure-balanced plug designed for regulation and shut-off of process medium flow. Its design enables the valve to be applicable to regulation at high differential pressures with low-linear-force actuators. Flow characteristics, Kvs values and leakage rates correspond to international standards.

Valves with a fail-safe action series HU 2x3 B have the same design as RV 2x3 with addition of increased seat sealing. Valves are equipped with fail-safe action actuators (valve closes or opens upon power failure).

Valves RV 2x3 B are especially designed for Belimo actuators.

Application

These valves have a wide range of application in heating, ventilation, power generation and chemical processing industries. Valve body can be optionally made of spheroidal cast iron, cast steel and austenitic stainless steel according to operating conditions.

The materials selected correspond to recommendations stipulated by ČSN-EN 1503-1 (1/2002) (steels) and ČSN-EN 1503-3 (1/2002) (cast). The maximum operating pressures for different materials are specified in the table on page 18 of this catalogue.

Process media

Valves series RV 2x3 are designed for regulation of flow and pressure of liquids, gases and vapours without abrasive particles e.g. Water, steam, air and other media compatible with material of the valve inner parts. The application of valves made of spheroidal cast iron (RV 213) for steam is limited by the following parametres: Steam must be superheated (its dryness $x_{,} \geq 0.98$) and inlet pressure $p_{,} \leq 0.4$ Mpa when differential pressure is above-critical or $p_{,} \leq 1.6$ MPa when differential pressure is unde-critical. In case these values are exceeded, it is necessary to use valve made of cast steel (RV 223). To ensure reliable regulation, producer recommends to pipe a strainer in front of the valve or ensure in any other way that medium will not contain abrasive particles or impurities.

Installation

The valve is to be piped the way so that the direction of medium flow will coincide with the arrows on the body.

The valve can be installed in any position except position when the actuator is under the valve body. When medium temperature exceeds 150°C, it is necessary to protect the actuator against glowing heat from the pipeline; e.g. by the means of proper insulating of the pipeline and valve or by tilting the valve away from the heat radiation.

Technical data

Series		RV / HU 213 RV / HU 223 RV / HU									
Type of valve		Two-way, single-s	seated control valve with pressu	ire-balanced plug							
Nominal size ran	ge	DN 15 to 65									
Nominal pressure	е	PN 16, PN 40									
Body material		Spheroidal cast iron	Cast steel	Stainless steel							
		EN-JS 1025	·								
		(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)							
Seat material :	DN 15 - 50	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4							
DIN W.Nr./ČSN	DN 65	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4							
Plug material:	DN 15 - 65	1.4021 / 17 027.6	1.4021 / 17 027.6	1.4571 / 17 347.4							
DIN W.Nr./ČSN											
Operating tempe	rature range	-20 to 180°C	-20 to 180°C	-20 to 180°C							
Face to face dim	ensions	Line 1 acc. to ČSN-EN 558-1 (3/1997)									
Flanges		Acc. to ČSN-EN 1092-1 (4/2002)									
Flange face		Type B1 (raised-faced	l) or Type F (female) acc. to ČS	N-EN 1092-1 (4/2002)							
Type of plug			V-ported, parabolic, perforated								
Flow characterist	tic	Linear, e	equal-percentage, LDMspline®, p	parabolic							
Kvs value			1.6 to 63 m³/hour								
Leakage rate		Class III. acc. to ČSN-EN 1349 (5/2001) (<0.1% Kvs) for c. valves with metal-metal seat sealing									
		Class IV. acc. to ČSN-EN 1349 (5/2001) (<0.01% Kvs) for c. valves with metal-PTFE seat sealing									
Rangeability r		50 : 1									
Packing		O - ring EPDM t _{max} =150°C, DRSpack (PTFE) t _{max} =150°C, Bellows t _{max} =180°C									

Remark: For low operating temperatures (-200 to +180°C), it is possible to supply the valve RV / HU 231 with body material made of 1.4308 (cast stainless steel)

 Δ p_{max}value is the valve max. differential pressure when open-close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that permanent

differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

For further actuating, s	information		Actuating (ad	,	NV24-3, NV230-3, NV24-MFT, NVF24-MFT, NVF24-MFT-E								
catalogue s	see actuator	5	Marking in va	alve spec. No.	EBK								
catalogue	sileets		Linear force		800 N								
			Kvs [m³/ho	our]	Δ $p_{\scriptscriptstylemax}$								
DN	Н	1	2	3	metal		PΊ	ΓFE					
25		10	6.3 1)	4.0 1)	1.60 (1.60))	1.60	(1.60)					
32		16.0	10.0	6.3 1)	1.60 (1.60))	1.60	(1.60)					
40	20	25.0	16.0	10.0	1.60 (1.60))	1.60	(1.60)					
50		40.0	25.0	16.0	1.60 (0.94	.)	1.60	(1.60)					
65		63.0	40.0	25.0	1.60 (0.25	5)	1.60	(1.60)					

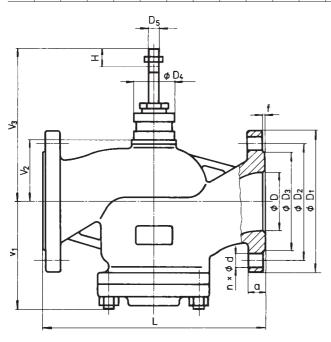
¹⁾ linear characteristic only

Perforated plug available only with Kvs values in shadowed frames with the following restrictions:

 Perforated plug with Kvs value acc. to column No. 2 available with linear or parabolic characteristic only.

metal - version with metal - metal seat sealing

PTFE - version with metal - PTFE seat sealing


(xx) - ∆p_{max} values specified in parentheses apply to perforated plug

Max. differential pressures specified in table apply to PTFE and O-ring packing. Δ p $_{\!_{\text{max}}}$ for bellows must be consulted with the producer.

Max. differential pressure Δ p for valves PN 16 must be 1.6 MPa.

Dimensions and weights for the type RV 2x3

		PN 16 PN 40									PN 16, PN 40													
DN	D,	D ₂	D ₃	d	n	D₁	D ₂	D ₃	d	n	D	f	D ₄	D ₅	L	V ₁	V ₂	$^{*}V_{2}$	V ₃	*V ₃	а	m,	m ₂	#m _v
	mm	mm	mm	mm		mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
25	115	85	68	14		115	85	68	14		25				160	85	52	250	148	346	18	7	8.5	3.5
32	140	100	78			140	100	78		4	32				180	85	52	250	148	346	18	8.5	10	3.5
40	150	110	88	18	4	150	110	88	18	4	40	2	44	10	200	85	52	250	148	346	18	8.5	10	3.5
50	165	125	102	10		165	125	102	10		50				230	117	72	270	168	366	20	14.5	21	3.5
65	185	145	122		4 1)	185	145	122		8	65				290	117	72	270	168	366	22	18.5	27	3.5

- with regard of the standard previously in force, there is an option to have the number of connection bolts as stipulated in ČSN-EN 1092-1
- *) for valve with bellows packing
- m_v weight to be added to weight of valve equipped with bellows packing
- m₁ for valves RV / HU 211
- $\dot{m_{\scriptscriptstyle 2}}$ for valves RV / HU 221 and RV / HU 231

200 line

RV 2x5 B

Control valves DN 15 - 65, PN 16 and 40 with Belimo actuators

Description

Control valves RV 215, RV 225 and RV 235 (further only RV 2x5) are three-way valves with mixing or flow-diverting function. In regard of used actuators, the valves are suitable for regulation at lower differential pressures. Flow characteristics, Kvs values and leakage rates correspond to international standards.

When assembled with a fail-safe action actuator, it closes straight way upon power failure.

Valves RV 2x5 B are especially designed for Belimo actuators.

Application

These valves have a wide range of application in heating, ventilation, power generation and chemical processing industries. Valve body can be optionally made of spheroidal cast iron, cast steel and austenitic stainless steel according to operating conditions.

The materials selected correspond to recommendations stipulated by ČSN-EN 1503-1 (1/2002) (steels) and ČSN-EN 1503-3 (1/2002) (cast). The maximum operating pressures for different materials are specified in the table on page 18 of this catalogue.

Process media

Valves series RV 2x5 are designed for regulation of flow and pressure of liquids, gases and vapours without abrasive particles e.g. water, steam, air and other media compatible with material of the valve inner parts. The application of valves made of spheroidal cast iron (RV 215) for steam is limited by the following parametres: Steam must be superheated (its dryness $x_{_{1}} \geq 0.98$) and inlet pressure $p_{_{1}} \leq 0.4$ MPa when differential pressure is above-critical or $p_{_{1}} \leq 1.6$ MPa when differential pressure is under-critical. In case these values are exceeded, it is necessary to use valve made of cast steel (RV 225). To ensure reliable regulation, producer recommends to pipe a strainer in front of the valve or ensure in any other way that medium will not contain abrasive particles or impurities.

Installation

When the valve is used as mixing, it must be piped the way so that direction of process medium flow will coincide with the arrows on the body (inlet ports A, B and outlet port AB). When the valves is used as diverting, process medium flows through common valve port AB and split streams leave through valve ports A and B.). The valve can be installed in any position except position when the actuator is under the valve body. When medium temperature exceeds 150°C, it is necessary to protect the actuator against glowing heat from the pipeline; e.g. by the means of proper insulating of the pipeline and valve or by tilting the valve away from the heat radiation.

Technical data

Series		RV / HU 215	RV / HU 225	RV / HU 235						
Type of valve		Т	hree-way reversed control valv	e						
Nominal size ran	ge		DN 15 to 65							
Nominal pressure	е		PN 16, PN 40							
Body material		Spheroidal cast iron	Cast steel	Stainless steel						
		EN-JS 1025	1.0619 (GP240GH)	1.4581						
		(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)						
Seat material:	DN 15 - 50	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4						
DIN W.Nr./ČSN	DN 65	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4						
Plug material:	DN 15 - 65	1.4021 / 17 027.6	1.4021 / 17 027.6	1.4571 / 17 347.4						
DIN W.Nr./ČSN										
Operating tempe	rature range	-20 to 180°C	-20 to 180°C	-20 to 180°C						
Face to face dim	ensions	Line 1 acc. to ČSN-EN 558-1 (3/1997)								
Flanges		Acc. to ČSN-EN 1092-1 (4/2002)								
Flange face		Type B1 (raised-faced) or Type F (female) acc. to ČSN-EN 1092-1 (4/2002)								
Type of plug		V-ported, parabolic, perforated								
Flow characterist	tic	Line	ear, equal-percentage in AB - B	way						
Kvs value			1.6 to 63 m³/hour							
Leakage rate		Class III. acc. to ČSN-EN 1349 (5/2001) (<0.1% Kvs) for c. valves with metal-metal seat sealing								
		Class IV. acc. to ČSN-EN 1349 (5/2001) (<0.01% Kvs) for c. valves with metal-PTFE seat sealing								
Rangeability r		50 : 1								
Packing		O - ring EPDM t _{max} =150°C, DRSpack® (PTFE) t _{max} =150°C, Bellows t _{max} =180°C								
Remark: For	low operating	temperatures (-200 to +180°C), it is possible to supply the valve RV / HU 231 with body material								

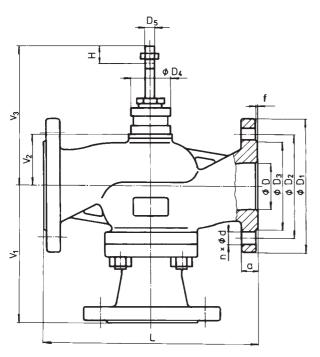
For low operating temperatures (-200 to +180°C), it is possible to supply the valve RV / HU 231 with body material made of 1.4308 (cast stainless steel)

 Δ p_{max}value is the valve max. differential pressure when open-close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that permanent

differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

For furt	her inform	ation on	Actuating (actu	ator)	NV24-3, NV230-3, NV24-MFT, NVF24-MFT, NVF24-MFT-E							
actuatir	ng, see ac	tuators′	Marking in valv	e spec. No.	EBK							
catalog	ue sheets	i	Linear force		800 N							
			Kvs [m³/hour]		Δ P _{max}							
DN	Н	1	2	3	metal PTFE							
15			2.51)	1.61)	4.00							
15		4.01)			3.40							
20				2.51)	4.00							
20			4.01)		3.40							
20	20	6.3 ¹⁾			1.56							
25	20	10.0	6.32)	4.02)	0.88 1.29							
32		16.0	10.0	6.32)	0.45 0.77							
40		25.0	16.0	10.0	0.23 0.49							
50		40.0	25.0	16.0	0.10 0.29							
65		63.0	40.0	25.0	0.02 0.17							

¹⁾ parabolic plug in straight way, V-ported plug in angle way


metal - version with metal - metal seat sealing PTFE - version with metal - PTFE seat sealing Max. differential pressures specified in table apply to PTFE and O-ring packing. $~\Delta~p_{_{\text{max}}}$ for bellows must be consulted with the producer.

Bellows packing can be used with V-ported plug only.

Max. differential pressure Δ p for valves PN 16 must be 1.6 MPa.

Dimensions and weights for the type RV 2x5

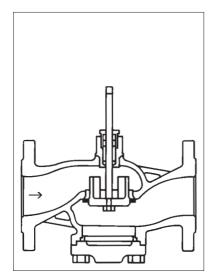
		F	PN 16	6)			PN 16, PN 40															
DN	D ₁	D_2	D ₃	d	n	D₁	D_2	D ₃	d	n	D	f	D ₄	D₅	L	V ₁	V_2	$^{*}V_{2}$	V ₃	$^{\#}V_{_{3}}$	а	m₁	m ₂	#m _v
	mm	mm	mm	mm		mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
15	95	65	45			95	65	45			15				130	110	47		143		16	5.5	6	
20	105	75	58	14		105	75	58	14		20				150	115	47		143		18	6.5	7	
25	115	85	68		4	115	85	68		4	25				160	130	52	250	148	346	18	8.3	9.5	3.5
32	140	100	78		4	140	100	78		4	32	2	44	10	180	135	52	250	148	346	20	10.5	12	3.5
40	150	110	88	18		150	110	88	18		40				200	140	52	250	148	346	20	12	13.5	3.5
50	165	125	102	10		165	125	102	10		50				230	175	72	270	168	366	20	17	24	3.5
65	185	145	122		4 1)	185	145	122		8	65				290	180	72	270	168	366	22	22	31	3.5

- with regard of the standard previously in force, there is an option to have the number of connection bolts as stipulated in ČSN-EN 1092-1
- for valve with bellows packing
- m, weight to be added to weight of valve equipped with bellows packing
- m₁ for valves RV 215
- m₂ for valves RV 225 and RV 235

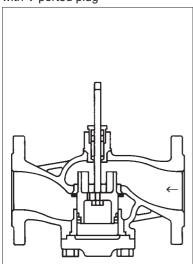
V-ported plug in angle way, in straight way for linear characteristic V-ported plug and for equal-percentage characteristic parabolic plug.

Valve complete specification No. for ordering RV / HU 2x1, RV 2x3, RV 2x5

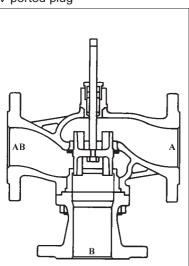
				ΥΥ	XXX	XXX	XXXX	ΧX	_ XX	/ XXX	_ XXX
1	Valve	Control valve		RV		^ ^ ^		^ ^	- ///		- ///
١.	vaive	Fail-safe action valve	`	HU							+
2	Series	Valves made of sph. of									_
۷.	Selles	Valves made of cast			2 2						
		Valves made of cast			23						_
		Reverse valve		1							
		Pressure-balanced, re		3						_	
					<u>5</u>						-
- 2	Actuating	Mixing (diverting), rev	reise vaive		5	E					
٥.	Actuators with a fail-safe	NV24-3	(24 \ / 2 nocition)			EBK					
	function		(24 V, 3-position)								
		NV230-3	(230 V, 3-position)			EBK					
		NV24-MFT	(24 V, Multi-functional)			EBK					
		NVF24-MFT 1)	(24 V, Multi-functional)			EBK					
_	0 "	NVF24-MFT-E 1)	(24 V, Multi-functional)			EBK	4				_
4.	Connection	Raised flange					1				
_		Female flange	(00 (10000)				2				_
5.	Body material	Cast steel 1.0619	(-20 to 400°C)				1				
		Sphr. cast iron EN-JS					4				
		CrMo steel 1.7357	(-20 to 500°C)				7				
	(Operating temperature ranges	Stained steel 1.4581	(-20 to 400°C)				8				
	are specified in parentheses)	Other material on rec	luest				9				
6.	Seat sealing	Metal - metal					1				
	³⁾ from DN 25; $t_{max} = 260$ °C	Soft sealing (metal - P					2				
		Hard metal overlay or	sealing surfaces				3				
7.	Packing	O - ring EPDM					1				
		DRSpack® (PTFE)					3				
		Bellows					7				
		Bellows with safety P7	FE packing				8				
8.	Flow characteristic	Linear						L			
	4) Not applicable to RV 2x5	Equal-percentage in	straight way					R			
		LDMspline ^{® 4)}						S			
		Parabolic 4)						Р			
		Linear - perforated pl						D			
		Equal-percentage - p						Q			
		Parabolic - perforate						Z			
9.	Kvs	Column No. acc. to k	(vs values table					Х			
10.	Nominal pressure PN	PN 16							16		
		PN 40							40		
11.	Max. operating temp.° C	O - ring EPDM							140		
	5)Not applicable to RV / HU 2x3	DRSpack® (PTFE)								150	
		Bellows								180	
12	Nominal size DN	DN									XXX


Ordering example:

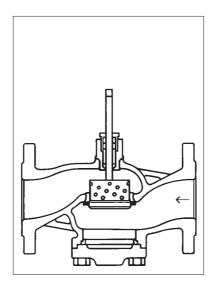
Two-way control valve DN 65, PN 40, with electric actuator NV230-3, body material: spheroidal cast iron, flange with raised face, metal-metal seat sealing, PTFE packing, linear characteristic, Kvs = 63 m^3 /hour is specified as follows: RV 211 EBK 1413 L1 40/150-65


Valves RV / HU 2x1

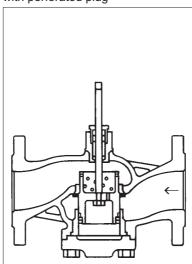
Section of valve with V-ported plug


Valves RV / HU 2x3

Section of pressure-balanced valve with V-ported plug



Valves RV 2x5


Section of three-way valve with V-ported plug

Section of valve with perforated plug

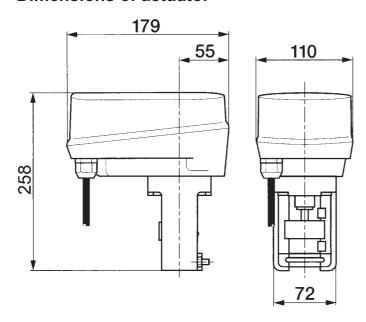
Section of pressure-balanced valve with perforated plug

Electric actuators NV... Belimo

Technical data

T	NV /O / O	NI) (000 0	ND COA NACT	ND/EOA NAET	NIV/EQ4 NAET E						
Туре	NV24-3	NV230-3	NV24-MFT	NVF24-MFT	NVF24-MFT-E						
Marking in valve specification No.	<u>EBK</u>										
Voltage	AC/DC 24 V	AC 230 V		AC/DC 24 V							
Frequency		5060 Hz									
Motor power	3 '	W	5 W	5,5	5 W						
Control	3 - po	sition	0 - 10 \	/ (3 - position, ON	- OFF)						
Running time	150 s	(90 s)	•	150 s (95 to2000 s	s)						
Fail-safe mode			30 s								
Fail-safe function			indirect	direct							
Nominal force	800 N										
Travel	2 to 20 mm										
Enclosure	IP 54										
Process medium max. temperature	+5 150°C (with bellows 180°C)										
Ambient temperature range	0 to 50°C										
Ambient humidity limit		5 95 %									
Weight	1,5 kg										

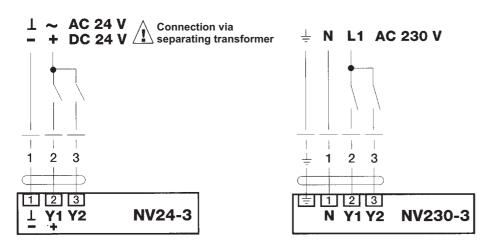
Direct and indirect function of actuator

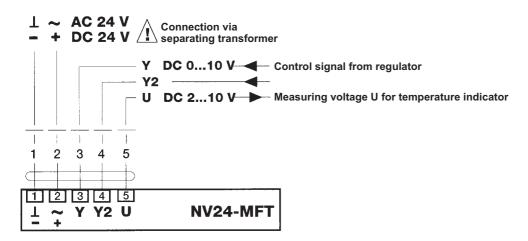

Direct function ensures that actuator stem extends (the valve opens) upon power supply failure.

Indirect function ensures that actuator stem retracts (the valve closes) upon power supply failure.

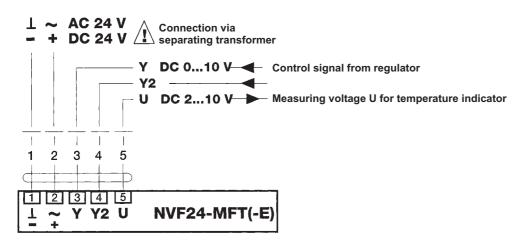
Multi-functional technology MFT

Due to a built-in microprocessor, some of the actuator's parameters can be set by the user, e.g.: type of control signal, running time, tripping torque value, etc. The configuration is carried out with PC or a special programming device.


Dimensions of actuator



Wiring diagrams of actuators


NV24-3 and NV230-3

NV24-MFT

NVF24-MFT and NVF24-MFT-E

Maximal permissible operating pressures [MPa]

Material	PN					Tem	perature	[°C]				
		120	150	200	250	300	350	400	450	500	525	550
Brass	16	1,60	1,14									
42 3135												
Grey cast iron EN-JL 1040	16	1,60	1,44		-							
(EN-GJL-250)					-						-	
Spher.cast iron EN-JS 1025	16	1,50	1,40	1,40	1,30	1,10						
(EN-GJS-400-18-LT)	40	4,00	3,88	3,60	3,48	3,20						
Cast steel 1.0619	16	1,60	1,50	1,40	1,30	1,10	1,00	0,80				
(GP240GH)	40	4,00	4,00	3,90	3,60	3,20	2,70	1,90				
Chrommolybden steel												
1.7357 (G17CrMo5-5)	40	4,00	4,00	4,00	4,00	4,00	4,00	3,90	3,10	1,80		
Stainless steel 1.4581	16	1,60	1,50	1,40	1,30	1,30	1,20	1,20				
(GX5CrNiMoNb19-11-2)	40	4,00	3,80	3,50	3,40	3,30	3,10	3,00				

Notes:

LDM, spol. s r.o. Litomyšlská 1378 560 02 Česká Třebová Czech Republic

tel.: +420 465 502 511 fax: +420 465 533 101 E-mail: sale@ldm.cz http://www.ldm.cz LDM, spol. s r.o. Büro Prague Tiskařská 10 108 28 Praha 10 - Malešice Czech Republic

tel.: +420 234 054 190 fax: +420 234 054 189

LDM, spol. s r.o. Büro Ústí nad Labem Mezní 4 400 11 Ústí nad Labem Czech Republic

tel.: +420 475 650 260 fax: +420 475 650 263

LDM servis, spol. s r.o. Litomyšlská 1378 560 02 Česká Třebová Czech Republic

tel.: +420 465 502 411-3 fax: +420 465 531 010 E-mail: servis@ldm.cz

LDM, Polska Sp. z o.o. Modelarska 12 40 142 Katowice Poland

tel.: +48 32 730 56 33 fax: +48 32 730 52 33 mobile: +48 601 354999

E-mail:

ldmpolska@ldm.cz

LDM Bratislava s.r.o. Mierová 151 821 05 Bratislava Slovakia

tel.: +421 2 43415027-8 fax: +421 2 43415029 E-mail: ldm@ldm.sk http://www.ldm.sk LDM - Bulgaria - OOD z. k. Mladost 1 bl. 42, floor 12, app. 57 1784 Sofia Bulgaria

tel.: +359 2 9746311 fax: +359 2 9746311 GSM: +359 88 925766 E-mail: ldm.bg@mbox.cit.bg OAO "LDM" Chernyakhovskogo str., build. 4 125319 Moskau Russian Federation

tel.: +7 095 7973037 fax: +7 095 7973037

E-mail: inforus@ldmvalves.com

LDM Armaturen GmbH Wupperweg 21 D-51789 Lindlar Germany

tel.: +49 2266 440333 fax: +49 2266 440372 mobile: +49 177 2960469

E-mail: ldmarmaturen@ldmvalves.com

http://www.ldmvalves.com

Your partner

LDM reserves the right to modify or improve the designs or specifications of such products at any time without notice.